How the NeoCortex uses Visual Information to Complete Occupations

Mary Warren, OT, PhD, FAOTA

1

1

Visual Perceptual Processing

The overall function of the brain is to filter, organize and integrate sensory information to make an adaptive response to the environment

Jean Ayres

2

The brain sees **not** the eye

- And for the brain it's all about pattern
 - To survive and thrive we look for patterns that indicate threats and resources
- When we see meaningful pattern
 - We pay attention to it
 - Compare it to our past experience
 - And use that past experience to create a current context to direct our actions
 - Predict the sequence of that actions will occur
 - · And formulate a plan to respond

Hawkins, 2004, 2016; Barrett, 2017

3

3

Prediction and the Brain

- Brain uses past experiences to create a context for evaluating incoming information
 - Picture yourself sitting in a new Italian restaurant
 - Your brain calls up past experiences with nice Italian restaurants and says: the last time my body was sitting in a restaurant like this
 - What did I see, hear, taste?
- Then uses this context to run a simulation to predict what you will experience and what will happen next
 - Based on my past experience in an Italian restaurant like this
 - I predict a waiter will come to my table, hand me a menu and the menu will have pizza and Italian dishes on it

Hawkins, 2004; Barrett, 2017

4

Δ

Context and Environment

- As we go through life, we collect, combine and store our experiences in different environments to create a library of different contexts for our actions
 - Environment: "external physical and social conditions that surround the client"
 - Context: "environmental and personal factors specific to each client that influence engagement and participation in occupations"
- We link context and environment together to construct a plausible hypothesis (e.g. prediction) about
 - What we will see next when we move our eyes and
 - What will happen next when we move our bodies

AOTA Practice Framework 2020

5

Vision's Attributes

- Vision is the primary way we acquire patterns
- We are all **primarily** vision learners
 - 90% of all sensory input is visual
 - 1/3-1/2 of the brain is devoted to pure visual processing
- We choose vision because it has certain useful attributes

Medina, 2008; Gilbert-A et al., 2011

6

Vision is our most **far reaching** sensory system

- First to alert us to danger or pleasure
- Enables us to be anticipatory
 - Predict what will happen next
- And **plan** for situations

7

Vision provides speed

- Visual system conveys a tremendous amount of information within seconds
 - It is our only truly **integrative** sense
 - Telling us everything we need to know
- Can instantly identify an object with vision
 - Can also identify objects using your other senses but it will take longer

Vision's speed and anticipation enables us to adapt to **dynamic** environments

- · Operate in two types of environments
 - Static
 - Spatial adaptation only
 - Dynamic
 - · Spatial and temporal adaptation

9

9

Because of its attributes we rely on vision to guide our

- Decision making
 - Size up situations
- Social interactions
 - Facilitate and ensure smooth interactions
- Motor and postural control
 - Avoid situations that challenge postural control

Vision Rules!

• **Primary** way we acquire information

- **Dominates** recreational activities
- Enables us to participate in dynamic unpredictable activities

- Vision also builds the context we use to predict respond to situations
 - Being able to accurately see the environment is critical to the ability to make correct decisions about how to engage the environment

11

11

EXAMPLE

 You are in a grocery store (environment) standing in the fruit section of the produce aisle (context) and you see something round and red...

12

With practice, we get very good at making accurate predictions

- We usually interpret context accurately and our subsequent actions are successful
- If you predict correctly (its an apple)
 - What you are seeing just **confirms** your prediction
 - Visual processing doesn't need to go any further
- When we predict accurately, we rapidly and successfully respond to situations
 - We purchase the apples and go on our way

13

13

Our Predictions **MUST** be Accurate

- When we can't predict accurately we experience significant stress
 - Feels like we're hallucinating-nothing makes sense
 - We become fearful
- We express that stress/fear by
 - Becoming frustrated, agitated, angry
 - Shutting down, avoiding, withdrawing

14

Vision Impairment

- Causes
 - Disease/conditions
 - Age related eye diseases
 - AMD, glaucoma, diabetic retinopathy
 - · Neuro degenerative diseases-
 - Parkinsons, AD, MS
 - Trauma
 - · Brain injury-stroke, TBI, tumor, encephalitis, anoxia
 - Eye injuries
 - Age
 - Natural age-related declines in vision
 - Reading acuity, contrast acuity, color acuity
- Combination of causes
 - Especially in the older adult

15

15

Acquired brain injury can alter

- Quality/amount of visual input into brain
 - Changes in acuity, visual field, oculomotor
- Brain's ability to process normal visual input
 - Changes in attention
- Regardless
 - Decreases ability to visually detect meaningful patterns and context
 - And ultimately the ability to use vision to complete occupations

Consequences of Vision Impairment

- Difficulty completing vision-dependent activities
- Slow processing speed
- Errors in decision making
- Fatigue
- Dropping out of occupations
 - Especially I-ADLS

Mennem et al., 2012; Berthold-Lindstedt et al., 2019; Hazelton et al., 2019

17

Behavioral Changes

- Anxiousness and uncertainty in responding to the environment
- Slowness in responding
- Decreased confidence in ability to complete activities
- Increased passiveness in decision making

Falkenberg et al., 2020; Hazelton et al., 2019; Warren, 2009; de Haan et al., 2015

18

In general...

- Experience greatest difficulty with activities completed in dynamic environments with lots of pattern
 - Community activities
 - Driving, shopping, working, sports
- Person avoids participating in activities in these environments
 - Prolongs adjustment to disability
 - Impacts wellness

19

19

Because of vision's importance

- Persons with vision no matter how limited will always attempt to use vision to complete occupations
 - Remember 1/3-1/2 of brain is devoted to visual processing
- Therefore OT must focus on enabling the client to use remaining vision capabilities to complete needed occupations

Medina, 2008

20

Key Lecture Take-Aways

- Vision is the primary conduit through which we interact with the world to identify context, resources and threats
- Vision's attributes enable us to very quickly process information and predict/plan for events
- Vision impairment reduces the accuracy, quality and completeness of visual input into the brain
 - Person may not see the critical features of environment or task that define the context
 - Prediction isn't triggered or isn't accurate
 - Participation in occupations declines

21

Visual Processing Framework for Evaluation and Intervention

The Visual Perceptual Hierarchy


1

What is Visual Perception?

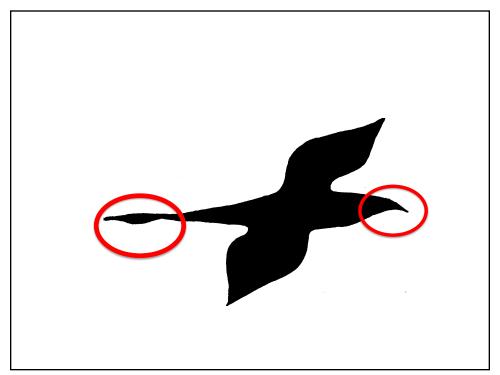
- Ability to interpret what is seen
 - Dependent on ability to use visual input to identify patterns and build concepts/rules
- Visual perceptual ability develops in childhood
 - As we engage with objects and learn how they behave in space
 - We collect, combine and store experiences with objects in different environments to create visual contexts to drive our actions

Visual Perceptual Hierarchy

 Visual perceptual processing is comprised of a hierarchy of processes that interact and subserve each other to provide integration of visual information

3

Visual Cognition


- Applying cognitive concepts of space/form to interpret visual input (patterns) to identify, understand and use objects to achieve goals
- Works on a memory prediction mode
 - We compare the current visual context to past experiences and predict how objects will behave in this particular instance
- Context and environment unlocks prediction

Visual Memory

- Supports visual cognition
 - We store thousands of visual images (memories) in the posterior areas of our brain
 - Seeing the visual details of an environment unlocks a memory that creates the context for an action
 - Seeing a specific object within the context of an environment unlocks a memory of the object's value and how to use it

5

Pattern Recognition

- Basic building blocks of memory
- Determines
 - Whether the image is stored in memory
 - Reject patterns that are nonsensical
- Requires ability to identify salient feature
 - The particular noticeable feature that defines an object and discriminates it from other objects

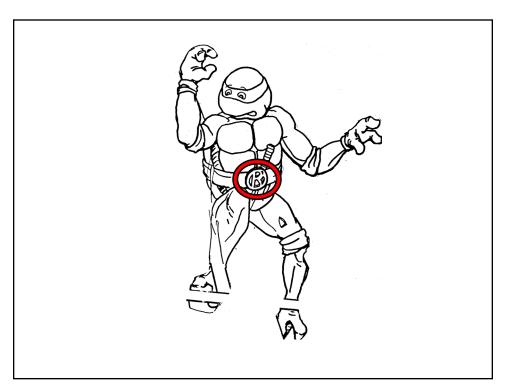
7

Attractors

- Perceptual template used to create and store memories of objects
- Template enables memory to be activated by broad range of input
- Attractors overlap with each other to provide mental representations of groups
- Create **generic** memories

9

We collect and store as many attractors/patterns as we can


- The outcome of experience is acquisition of sequences of patterns
- Frontal lobes use stored patterns when examining incoming patterns to make a decision about
 - Whether viewing a **new or familiar** pattern
 - Whether to use this pattern (weigh its value)
 - How to use this pattern

Visual Search and Scanning

- Sub-serves pattern recognition
 - Must actively search surroundings to locate meaningful patterns
- Uses saccadic eye movements to locate and foveate the target
- Occurs on two levels
 - Automatic reflexive
 - Directed by brainstem
 - Voluntary purposeful
 - Directed by frontal lobes

11

Visual Search and Scanning

- Completed in an organized, efficient, predictable pattern dictated by context and goal
 - Reading-linear
 - Non-structured landscape-often circular

13

Visual Attention

- Sub-serves search/scanning
 - Brain allocates attentional resources to initiate search and scanning
- · Critical component of visual processing
- Varies from global to focal depending visual analysis needed
 - Global attention-getting the lay of the land
 - Selective attention-applies an attentional spotlight to gather specific detail

Foundation Functions

- Oculomotor control
 - Provides perceptual stability
- Visual acuity
 - Provides visual clarity-ability to see details
- Visual field
 - Provides awareness of objects

15

Hierarchy levels must work together

- Integrated network
- Loss/ impairment at one level affects functioning of all other levels

Key Lecture Take-Aways

- Each process in the hierarchy is supported by the one that precedes it
- The processes must work together to ensure that information coming into the retina is transformed into images and rules governing visual perception
- Visual functions at the bottom of the hierarchy-acuity, field and oculomotor control-form the foundation for visual processing by ensuring that a high quality image is delivered to the brain
- Attractors-developed through multisensory engagement with objects-help us develop generic memories that enable us to judge incoming patterns; these memories are resilient to dementia, aging and brain injury

Occupational Therapy Approach

1

1

Challenges Addressing Vision Impairment in ABI

- TBI-more visual impairment and often more difficult to identify the impairment
- Stroke-combination of neuro-related and agerelated impairment
 - ARED, normal changes in vision due to aging
- Neuro-degenerative diseases
 - Cause early and progressing impairment
- **Extent** of the injury
 - Mild injuries cause pathway damage
 - Moderate-severe injuries cause structural damage

2

Vision Loss = Hidden Impairment

- Generally observe only the consequences of vision impairment
 - Mimics deficits in the performance skills it supports
 - Motor
 - Cognitive
- Often difficult to identify
 - May not be **apparent** until other skills improve
 - Must know the key behaviors, assessments
- Some vision impairment sticks around
 - Field, acuity, light sensitivity
- Critical to collaborate with other professionals
 - Must have good communication with the eye doctors
 - Ophthalmologists, optometrists
 - All rehab team members must communicate and work together

3

Goal of OT Intervention

- Overarching OT Goal
 - "To achieve health, well-being and participation in life through engagement in occupation" (p.s5)
- Core beliefs
 - "Active engagement in occupation promotes, facilitates, supports, and maintains health and participation." (p.s5)
 - "Participation occurs naturally when clients are actively involved in carrying out occupations or daily life activities they find purposeful and meaningful." (p.s5)
 - "Participation in occupations is considered both the means and the end in the occupational therapy process." (p.s7)

To Achieve Participation

- "Occupational therapy practitioners use their knowledge of the transactional relationship among the client, the client's engagement in valuable occupations, and the context to design occupation-based intervention" (p.s1)
- Intervention is most successful when it clearly aligns with the client's occupational goals
 - Client may say they want "full recovery" of vision BUT what they really want is to be able to complete their valued occupations again
 - Client may say they want independence BUT what they really want is participation

5

5

Changes in Visual Processing Following Acquired Brain Injury

- Primarily result from changes in 5 levels of the hierarchy involved in delivering high quality visual input to cortex
 - 3 Basic visual functions at the foundation of the pyramid
 - Acuity
 - Oculomotor control
 - Visual field
 - Plus 2 processes that help us acquire visual input
 - Visual attention
 - Visual scanning
- Impairment at these lower levels alter the quality and quantity of visual input coming into the brain
- Which in turn reduces ability to
 - Identify and categorize objects through pattern recognition
 - Create a library of visual **memories** in the posterior cortex
 - And use vision to achieve goals

6

Our focus when working with ABI client with vision impairment

- Evaluation and intervention focus on identifying/addressing deficiencies in the foundation visual skills and visual attention and visual scanning
- Evaluation
 - Identifying clients strengths and weaknesses in ability to these visual skills to complete daily occupations
- Intervention
 - Enabling client to use vision to participate in desired and required daily occupations

7

7

Evaluation

- "Evaluation process is focused on finding out
 - What the client wants and needs to do:
 - Determining what the client can do and has done;
 - Identifying supports and barriers to health, wellbeing, and participation"
- Ability to participate in occupation underlies and ties together evaluation and intervention

8

Purpose of Evaluation

- To develop an intervention plan
 - Evaluation is the first component of intervention
 - The **sole** reason evaluate the client is to select the most appropriate intervention
 - OT evaluates **FUNCTIONAL** vision
 - To understand how it hinders and facilitates occupational performance
 - Combines findings with other evaluations
 - To identify strengths, weaknesses, rehab potential

9

9

Optimal Client Outcome

- Our goal is for the client to be able to use vision as efficiently as possible
- Two options for intervention
- Option 1: Improve a deficient performance skill
 - If we can
 - We have zero control over restoring vision
 - Limited time with the client
 - Client factors that influence recover
 - Most restorative interventions have limited evidence to support their efficacy
 - Many are outside the OT wheelhouse

OT Intervention Tools

- Option 2: Create a visible environment that supports participation despite vision impairment
 - We have almost complete control over achieving an optimal person-environment fit
 - Combine with meaningful occupations and purposeful activities
 - Taps into context and learned expertise
 - Provides an explicit outcome to judge efforts
- This is our super power

11

11

OT Intervention

- Modification aligns with/supports how the neocortex operates
 - Brain initiates and guides actions by predicting what is going to happen, verifying it through sensory feedback and modifying as needed
 - Process begins with detecting/recognizing the environmental feature(s) that will trigger memory and unlock the sequence
 - A visible and explicit environment and a meaningful context are crucial for detection and recognition
 - They **prime the brain** for action

12

Key Lecture Take Aways

- It is easy to overlook vision impairment because it looks like a deficiency in performance skills it supports
- The purpose of OT evaluation is to develop an effective intervention that enables client to participate in desired occupations despite vision impairment
- Using modification to achieve optimal person-environment fit aligns with how the brain uses vision to direct actions
- Focus intervention on participation rather than restoration
- Collaborate with other vision specialists
- Stay within OT wheelhouse and scope of practice

13